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SUMMARY: 

Machine learning (ML) has been gradually applied in structural wind engineering. This study introduces the popular 

methodology and data source, then presents the four main applications of ML in wind engineering. ML helps us 

predict wind speed, wind pressure pattern recognition on the building surface, and wind-induced building responses. 

ML can help us to conduct aerodynamic optimization procedures. While most of the treatments mostly are passive 

configuration control. Thus, dynamic adaptive optimization in the real-time condition via deep reinforcement 

learning is proposed, which means the building can adjust the configuration based on the real-time environment. 
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1. INTRODUCTION  

Machine learning (ML) has been widely applied in different fields of society, including wind 

engineering. With the aid of ML, some redundant wind tunnel tests can be eliminated. They 

possess multiple functions, like doing the prediction work and optimizing the procedures to 

handle the work better. This study introduces the popular methodology and data source, then 

presents the main applications of ML in wind engineering.  

 

 

2. METHODOLOGY AND DATASET SOURCE  

2.1. Methodology  
Machine learning methods applied in wind engineering can be generally divided into three 
categories. The first category is general linear-separatable regression, including linear regression, 
logistic regression, and support vector machine (SVM). The next category contains the decision 
tree (DT) algorithm and the ensemble methods, including random forest, gradient boosting 
decision tree (GBDT), and Light gradient boosting machine (LGTM). The last category consists 
of deep learning-based neural network methods, including artificial neural network (ANN), 
convolutional neural network (CNN), and recurrent neural network (RNN).  
 

2.2. Dataset source  
For any AI algorithm, the quantity and quality of the data is the paramount issue when 
implementing the models. Generally, the dataset can be obtained from three different means. The 
most reliable data comes from wind tunnel tests or filed testament. Besides this, some massive 
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data may also be accumulated from numerical simulation in computational fluid dynamics 
(CFD). To achieve the enormous quantity and quality of data, many researchers have also chosen 
the public database or collected and combined the data from previous studies.  
 
 

3. RELATED WORK OF ML APPLICATIONS IN WIND ENGINEERING 

Four main categories of machine learning applications exist in wind engineering. The first is 

predicting wind speed or field in a particular location. Furthermore, the next is the prediction and 

pattern recognition of pressure on the building surface. The third category consists of the 

prediction and optimization of wind-induced responses of the building. The aerodynamic 

optimization refers to the passive configuration choice by default. The last is adaptive 

configuration optimization, which means the building can adjust the configuration based on the 

real-time environment via deep reinforcement learning. 

 

3.1. Wind speed and field prediction    
Wind speed is directly related to the wind loads of high-rise buildings. There are many studies 
investigating the prediction of wind speeds or wind fields. Mercer and Dyer (2014) predicted the 
daily peak wind gusts by a support vector regression algorithm. The method was applied in ten 
cities highly impacted by wind hazards and achieved outstanding social contributions. Equally, 
Liu et al. 2014) forecast the wind speed by applying the wavelet transform and SVM. The 
parameters in SVM were optimized by genetic algorithm to achieve better performance. Li and 
Shi (2010) investigated three kinds of ANN to predict wind speed. The relative distinction in 
some evaluation indices, like mean absolute error, can be up to 20%, suggesting a robust 
algorithm is necessary. Liu et al. (2012) utilized two hybrid approaches (ARIMA-ANN and 
ARIMA-Kalman) to predict the non-stationary wind speed.  
 

3.2. Optimization of hyper-parameters of the LGBM model 
The wind load of a building is not only related to wind speed but also directly connected to the 
pressure on its surface. Hu and Kwok (2020) utilized three ML algorithms, including decision 
tree (DT), random forest (RF), and gradient-based decision tree (GBDT), to predict the mean and 
fluctuating pressure coefficients on the surface. They also found that the GBRT better predicts 
the pressure coefficients in the studied Reynolds number (Re) and Turbulence Intensity (Ti) 
range. In addition, Hu et al. (2021) applied four ML models, including DT, RF, XGBoost, and 
GAN (generative adversarial network), to predict the wind pressures on the tall building surface 
under interference effects. They concluded that 70% of the wind tunnel test could be saved via 
the application of the GAN model. Likewise, Kim et al. (2021) also proposed the generative 
adversarial imputation network to predict the wind pressure in case of some failure tap test 
conditions. Kim et al. (2021) used the unsupervised machine learning algorithm clustering to 
recognize the pressure distribution pattern. Chen et al. (2022) examined three ML models, 
including back-propagation neural network (BPNN), genetic algorithm back-propagation neural 
network (GA-BP), and Wavelet Neural Network (WNN). The WNN showed the best 
performance predicting wind pressure characteristics in both the time and frequency domains. 
 

3.3 Wind-induced responses prediction and optimization 

The pressure characteristics are focused on the local part. More studies have emphasized the 

wind loads or wind-induced responses of the structure. Many factors impact the wind loads, like 

wind speed, aspect ratio, side ratio, terrain exposure, and building shape detail configurations. 

With the aid of machine learning, much effort can be saved. Nikose et al. (2018) obtained the 
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data from the Indian code consisting of the H, B, L, V, and terrain category parameters to 

calculate the dynamic wind-induced base forces via the ANN algorithm. Oh et al. (2019) 

explored the top floor displacements and velocity to obtain the floor strains utilizing CNN. Lin et 

al. (2021) collected massive amounts of data from previous studies to investigate the cross-wind 

vibration changing law due to terrain intensity, side ratio, and Scruton number parameters. They 

implemented DT), RF, KNN, and GBDT algorithms. They concluded that the GBDT has the best 

performance in predicting cross-wind vibration. Likewise, Lin et al. (2022) also utilized the data 

from WERC database-TU to explore the terrain exposure, side ratio, and aspect ratio impact on 

the cross-wind spectrum characteristics. The light gradient boosting machine (LGBM) was 

employed in the process, demonstrating high accuracy and low time cost. 

  

The wind-induced responses rely on the general outline shape and terrain exposure environment 

and significantly correlate with the building configuration details. Due to the flow separation and 

reattachment around bluff bodies, wind effects on buildings are sensitive to the external shape 

details and façade configurations. In the design stage, to choose an optimal shape, Elshaer et al. 

(2017) presented building corner aerodynamic optimization procedures to mitigate the wind 

loads by coupling an optimization algorithm, large eddy simulation (LES), and an artificial 

neural network. Similarly, Abdelaziz et al. (2021) presented a control system composed of plates 

that utilize genetic algorithm optimization to determine the optimum plate angle. They obtained 

data from numerical simulation and chose the optimal configuration from the calculated cases. 

 

3.4 Self-adaptive optimization 

Nonetheless, the wind environment is changing all the time. The self-adaptive dynamic 

optimization is also proposed in recent studies accordingly. Ding and Kareem (2018) suggested 

an appealing approach to designing a building that can adapt its form to changing complex wind. 

However, the cost increase associated with complex dynamic façade design and construction can 

be substantial. Xie and Yang (2019) proposed an innovative "Wind-Adaptable Design" concept. 

It is to take temporarily adjustable measures like utilizing wind fairings to modify the building's 

shape in extreme conditions while keeping the original shape in average weather conditions. 

Elhawary [(2020) employed deep reinforcement learning (DRL) agents to train ANN via the 

numerical simulation data to control the active flow around a 2D cylinder. He illustrated that 

mean velocity magnitude and velocity fluctuations have a significant reduction. 

Correspondingly, Rabault et al. (2020) also concluded that DRL implementation could solve 

problems like nonlinearity, high dimensionality, and non-convexity. Furthermore, Wang et al. 

(2022) developed an open-source platform DRLinFluids based on OPEN FOAM, which 

significantly accelerates the efficiency in computational fluid dynamics applications. The 

machine learning-based optimization of wind-induced responses on tall buildings with flexible 

façade configurations has aroused more and more concern in the community.  
 

 

4. CONCLUSIONS  

Overall, machine learning techniques are powerful tools to be implemented in the field of wind 

engineering. ML helps us predict wind speed, wind pressure pattern recognition on the building 

surface, and wind-induced building responses. Furthermore, ML can help us to optimize the 

configurations and conduct dynamic adaptive optimization in the real-time environment via deep 

reinforcement learning.  
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